exper eeeee
5555555555

Analyzmg Python
Performance with Intel®
VTune™ Amplifier XE

Faster, Scalable Code, Faster

Intel® VTune™ Amplifier Performance Profiler

™ Advanced Hotspots Hotspots viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017
ACCU rate Data = LOW Ove rh ead B8 Collection Log| | & Analysis Target Analysis Type | | 81 Summary | [SCREULIGRIEY | o Caller/Callee| | o% e

Grouping:| Function / Call Stack v ‘EHED
. . —]
] C P U G P U F P U th d g b d dth CPUTime ¥ < Context Switch. || Context Switch Count .« A
y y y rea I n) a n WI P Function / Call Stack uldleEzegf,T'méf'gﬁﬂﬁ". o | son [orgtheas = it ’ ingcive | preempton | Symchvon
. . v updateBusinessAccount 7915s @ [] 0s 0s 0597 0s 0055s 934
M e a n I n gfu I A n a | y S I S v mainsompSparallel_for@269 | 7.915s @ G s 0Os| 0597 0s 0.055s 934
» = __kmp_invoke_microtask | 7.915s @] 0s Os 0599 0s 0042s 815
. . . R » = updateBusinessAccount— 0s Os 0s 0120 0s 0013s 119
{] .
" Threading, OpenMP region efficiency P e — O R
. » __kmpc_critical 0s 2021s 0s 0609 0s 0.014s 262
|] Memory aCCeSS Sto rage deVICe » _lO_sprintf 1419s |O@B Os 0s 0613 O0s 0.006s 86 v
] < 3>« >
QOQFQ-Q® _3s ¥ } Ruler Area ~
OMP Worker Thread ... e . 7' Region Instance
E a S y 2|OMP Worker Thread ... Thread [v]
,E rtmtest_openmp (TID:... @3 Running
H OMP Worker Thread ... v [Context Switches
= Data displayed on the source code kv i

CPU Time Uk Spin and Overhe...

. . € > 5 []9 Hardware Event Sa...
= Easy set-up, no special compiles BT T =TT

For Windows* and Linux* From $899
“Last week, Intel® VTune™ Amplifier (Ul'only now available on OS X*)

helped us find almost 3X performance Claire Cates
improvement. This week it helped us Principal Developer
improve the performance another 3X.” SAS Institute Inc.

http://intel.ly/vtune-amplifier-xe

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTune™ Amplifier

Tune Applications for Scalable Multicore Performance

Agenda

Why python optimization is
important

How do you find places that
need optimization

Overview of profilers
Profiling Python using
VTune Amplifier

Mixed mode profiling
Summary

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Basic Hotspots Hotspots by CPU Usage viewpoint (change) ®

8 Collection Log| | @ Analysis Target Analysis Type K Summary ECRCIENY «% Caller/Callee o
Grouping: | Function / Call Stack) 7‘ ‘E \?\ CPU Time
CPU Timew @ A Viewing 4
) | 11
Function / Call Stack Effective Time by Utilization Bl spin | ov.. Module —r—
@Idle @ Poor [Ok @ Ideal @ Over Uil cl.so!_Py:
Pfunc@0x22e0 1.870s (N 0s Os mathmodule.so funct [Jcl.so!_Py:
L760s IS o5 o{pip) do_d |
: z n cl.so!__py:
b PyObject_GenericGetAttr 0.940s [N 0s 0s libpython2.6.50.1.0 PyOl = _ '\ ="
bPyThread_acquire_lock o0.910s (N 0s 0s libpython2.6.50.1.0 PyTH |fflibpython2.
L_pyx pf 2c1 do circle cy] 0.610s (NN 0s 0 __py, [p2.py!=mc
»PyNumber_Multiply 0.430s (D 0s 0s libpython2.6.50.1.0 PyN("b::“?’—t
on!_s
P func@0x3d19645ed0 0.420s [0s 0s libpython2.6.50.1.0 funct ™" o =
b__Pyx_PyObject_CallMetho | 0.220s [l 0s 0s clso _Py
P PvFloat FromDouble 0.180s [0s 0s libovthon2.6.50.1.0 PVFI(
Selected 1 row(s): 1.870s 0s 0Os [~
arm| B T |)
e — | L S = L L L L L L L L
WCQFQ-Qe 0.5s 1s 4 4 : X 55 6s 655 7s 755 8s 8

python (TID...

Why do you need Python optimization?

Python is used to power a wide range of software, including those where
application performance matters.

* web server code
« complex automation scripts (even build systems)
 scientific calculations, etc.

Python allows you to quickly write code that may not scale well, but you won't
know it unless you give it enough workload to process.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

How do you find the places that need optimization?

Code examination
= Easiest in terms of you don’t need any tools except code editor

= Difficult in practice, also assumes you know how certain code constructs
perform

= This might not work for even moderately large code base because there is just
too much information to grasp.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

How do you find the places that need optimization?
(continued)

Logging

= Done by making special version of source code augmented with timestamp
logging

= |nvolves looking at the logs trying to find the part of your code that is slow.

= This analysis can be tedious and it also involves changing your source.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

How do you find the places that need optimization?
(continued)

Profiling

= Profiling is gathering some metrics on how your application works under
certain workloads

= |n this paper we will be focused on CPU hotspot profiling. Finding places in
your code that consume a lot of CPU cycles.

= |n theory you could also profile other interesting cases such as waiting on a
lock, memory consumption, etc. (not currently implemented in VTune™
Amplifier)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Overview of existing profilers

There are three basic types of profilers:
 Event

Event based profilers collect data when certain events occur. For example on
function entry/exit or when classes are loaded/unloaded, etc. The built-in Python
profiler cProfile is an example of an event based profiler.

* |nstrumentation

In an instrumentation based profiler the target application is modified and
basically the application profiles itself. This can be done by manually modifying
the application or by support built inside the compiler.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Overview of existing profilers (contd)

o Statistical

A statistically based profiler samples data at regular intervals. The hottest
functions should be at the top of the sample distribution. This type of profiling
provides approximate results but are much less intrusive on the target
application. Profiling overhead is also much less workload dependent. Intel®
VTune™ Amplifier is an example of a statistically based profiler.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Short overview of Python profilers
Tool _____|Description _________|Platforms | Profile level |Avg. overhead *

Intel® VTune™ * Rich GUI viewer Windows Line ~1.1-1.6x
Amplifier * Mixed C/C++/Python Linux
code

cProfile (built-in) Text interactive mode: Any Function 1.3x-5x
“‘pstats” (built-in)
+ GUI viewer:

RunSnakeRun (Open

Source)
« PyCharm
Python Tools * Visual Studio (2010+) Windows Function ~2X
* Open Source
line_profiler * Pure Python Any Line Up to
* Open Source 10x or more

+ Text-only viewer

* Measured against Grand Unified Python Benchmark

Machine specs: HP EliteBook 850 G1; Intel® Core™ i5-4300U @1.90 Ghz (4 cores with HT on) CPU; 16 GB RAM; Windows 8.1 x86_64

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Profiling Python code using Intel® VTune ™
Amplifier XE

Intel® VTune ™ Amplifier XE now has the ability to profile Python code. It can
give you line level profiling information with very low overhead. Some key

features are:

Both Python 32- and 64-bit are supported, 2.7.x and 3.4.x-3.5.x versions
Remote collection via SSH supported
Rich user interface with multithreaded support; zoom & filter; source drill-down

= Supported workflows
— Start application, wait for it to finish

— Attach to application, profile, detach

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Profiling Python code using Intel® VTune ™
Amplifier XE

M Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017

L] tion Log| | @ Analysis Target Analysis Type % Bottom-up| | +% Caller/Callee | | % Top-down Tree| | B Platform

Elapsed Time : 9.115s

CPU Time - 6.998s

Total Thread Count 3

Paused Time *: Os
Top Hotspots
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in impi overall
Function Module CPU Time
func@0x1e0edal0 python27.dIl 3.121s
do_work test_class_sample.py 1.710s
PyObject GetAtir python27.dll 1.265s
func@0x1e0eccdd python27.dll 0577s
func@0x1e08f4a0 python27.dIl 0.110s

“N/A is applied to non-summable metrics.

CPU Usage Histogram

This histogram displays a percentage ofthe wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

8s

o o <l
£ g s
£
5
H

6sq 2
H 8!

S|

8

1s |
|

I

2 }
|

|

0Os T T t

0 1 2 3 4

Idle Poor m
0

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze
Using Intel VTune™ Amplifier XE

Create a project.
Run basic hotspot analysis

Interpret result data

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Create a Project

To analyze your target with VTune™ Amplifier, you need to create a project,
which is a container for an analysis target configuration and data collection

results.

* Run the amplxe-gui that launches the VTune Amplifier GUI
« Click on the menu button select New->Project

« Specify the project name test_python

VTune Amplifier creates the test_python project directory under the $HOME/intel/
ampl/projects directory and opens the Choose Target and Analysis
Type window with the Analysis Target tab active.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Create a Project

« From the left pane, select the local target system and from the right pane
select the Application to Launch target type

» The configuration pane on the right is updated with the settings applicable to
the selected target type.

» Specify and configure your target as follows:
» For the Application field, browse to your python executable
« For the Application parameters field, enter your python script
» Specify the working directory for your program to run

» Use the Managed code profiling mode pull down to specify Mixed

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Create a Project

™ Choose Target and Analysis Type

@ REWSIRPINEd | Analysis Type
| Accessible Targets

@ local Launch Application v
- remote Linux (SSH) Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.
--£3) Intel Xeon Phi coproc:
D Intel Xeon Phi coproc: & Highly accurate CPU time collection is disabled for this analysis. To enable this feature, run the product
X with the administrative privileges.
[Arbitrary Targets
@ local Application: C:\Python27\python.exe v Browse... n
@ Intel Xeon Phi coproa
@ Intel Xeon Phi coproc: | Application parameters: C:\Users\kpoleary\Desktop\python_demo\test_clz v Modify...

[] Use application directory as working directory

Working directory: C:\Users\kpoleary\Desktop\python_demo v Browse...

User-defined environment variables:
Modify...
Managed code profiling mode: | Mixed v

[] Automatically resume collection after (sec):

[l Automatically stop collection after (sec):

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Run Python Hotspot analysis

« Click the Choose Analysis button on the right to switch to the Analysis
Type tab

* In the Choose Target and Analysis Type window, switch to the Analysis
Type tab.

« From the analysis tree on the left, select Algorithm Analysis > Basic
Hotspots

« The right pane is updated with the default options for the Hotspots analysis

» Click the Start button on the right command bar to run the analysis.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Run Basic Hotspot analysis

8 Choose Target and Analysis Type

@ Analysis Target

YT

-7 Algorithm Analysis

A
44 Advanced Hotspo
A Concurrency
44 Locks and Waits
A HPC Performance
{7 Microarchitecture Anz
A General Exploratio
& Memory Access
A TSX Exploration
-4 TSX Hotspots
A SGX Hotspots
{7 Platform Analysis
A CPU/GPU Concun
44 GPU Hotspots
A Disk Input and Ou
{7 Custom Analysis
i.f4 Hardware Event-b
‘.4 Memory Access 0

Optimization Notice

/&‘ Analysis Type

INTEL VTUNE AMPLIFIER XE 2017

I Q Start Paused

Basic Hotspots Copy

Identify your most time-consuming source code. This analysis type cannot be used to profile the system but must either launch an application/process or attach to
one. This analysis type uses user-mode sampling and tracing collection. Learn more (F1)

& Highly accurate CPU time collection is disabled for this analysis. To enable this feature, run the product with the administrative privileges.

-

CPU sampling interval, ms: | 10 =
Choose Target

DAnaIyze user tasks, events, and counters

[] Analyze OpenMP regions

® Details

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Interpret Result Data

When the sample application exits, Intel® VTune ™ Amplifier finalizes the results
and opens the Hotspots viewpoint where each window or pane is configured to
display code regions that consumed a lot of CPU time. To interpret the data on
the sample code performance, do the following:

Start analysis with the Summary window. To interpret the data, hover over the
question mark to read the pop-up and better understand what the metric means.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Interpret Result Data

)

) Elapsed Time : 9.538s

>) CPU Time “: 7.004s
Total Thread Count: 3
Paused Time Os

Note that CPU Time for the sample application is equal to 7.004 seconds. It is
the sum of CPU time for all application threads. Total Thread Count is 3, so the

sample application is multi-threaded.

The Top Hotspots section provides data on the most time-consuming functions

(hotspot functions) sorted by CPU time spent on their execution.
v) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application

performance.

Function Module CPU Time
func@0x1eledall python27.dll 2.894s
do work test_class_sample.py 1.580s
PyObject GetAtir python27.dll 1.229s
func@0x1eleccd0 python27.dll 0.610s

Optimization Notice func@0x1e08f4a0 python27.dll 0.280s

Copyright © 2017, Intel Corpord
*Other names and brands may |

DY V77, B R D 2 JE

Steps to analyze — Interpret Result Data

The CPU Usage Histogram shows you how well you are utilizing the different
cores of your system. It indicates the Target Utilization which is the maximum
cares available and also the Average Utilization. You can use the sliders at the
bottom of the graph to set which values you would like to be Ideal, Ok, Poor and

Id |e . (v) CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the
Idle CPU usage value.

75

Elapsed Time

Target Utilization

N O S P oty ottt it

T T
2 3
Idle Poor

|

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Interpret Result Data

Click on the Bottom-up tab. You can see the hottest functions in your
application. You can also see the threads in your application and how much CPU

time was spent in each thread, you can easily see if your workload is balanced
between your threads. In addition, VTune™ Amplifier color codes your effective

time by utilization to indicate whether you are utilizing your CPU efficiently.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Interpret Result Data

% Basic Hotspots Hotspots by CPU Usz wpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017
] onlog| | @ Ar & Bottom-up [JEREIEAES
Grouping: | Function / Cal Stack v [t @] [%] | cPuTime v
CPU Timew Viewing 4 00f0 [selected stack(s)
Function / Call Stack Effective Time by Utilization spin | Ove... Module Function (Full) Source File AZ No stack information]
@ldle @Poor 0Ok @ Ideal @ Over Time | Time
func@0xleDedal0 31215 0s Os python27.dll func@0xleDedald Oxled
do_work 1.710 IR 05 Os test_class_samp... do_work(id$6204-9988:0xpytraceScode=5) test_class_sampl .. 0453
) PyObject_GetAttr 1.265< (I 0s 0s python27.dIl PyObject_GetAttr Oxled)
@func@0x1edeccd0 0.577s I 0s 0s python27.dll func@0x1eDeccdd Oxled)
@func@0x1e08f4a0 s s python2Zdll func@0x1e08f4ad Oxleg
@ func@0xleledcb -0 s python27.dll func@0xleDedch? Oxleg
@func@0x16099210] python27.dll func@0x1e099a10 Oxled
@func@0xlel1el70 20 python27.dll func@0xlel1el70 Oxle]
) PyEval_EvalFramefx] < python27.dil PyEval_EvalFrameEx Oxled
@ Py_nitializefx 2| < python27.dll Py _InitializeEx Oxle]
@func@0x7858¢f00 | s MSVCRS0.dIl func@0x7858¢f00 0x78;
Selected 1 row(s): 3121s. 0s| Os
< >« >
- — " T Y y y Y y T ¥ T y y y ¥ —
WQQQe | 055 1s 155 2 255 3 355 4 455 5 555 6s 655 7s 7.55 & 855 Thread v]
funcooeszad (.. | [A 0 Running
fumc0c1d00131. r...| [ik CPU Tirme
func@Oc7es43aacl ... | ik Spin and Ov..
[] ¥ CPU Sample
CPU Usage
= dluk CPU Time
g ks Spin and Ov...
£
CPU Usage

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Steps to analyze — Interpret Result Data

wpoint (change) @

% Bottom-up | |+% T

Analysis i Summary

9D

e| | B8 Platform

R e P e B —
Double click on one of your e
functions, this brings up the et € 550
source code for your application, B
You can view how much time
you are spending on each lineof =
your application e ——

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

INTEL VTUNE AMPLIFIER XE 2017

CPU Time v
Viewing Tof1 | selected stack(s)
100.0% (1.710s of 1.710s)

test_class_sample.pyldo work - test_class.
python27.dilfunc@0x1eDedch7+0x7 - [unk.
test_class_sample.pyl_call _+0x5-test_c.
python27.dilfunc@0x1e0edB60+0x7 - [unk.
threading pylrun+0x1d - threading py: 763
python27.dllfunc@0x1eDedcb7+0x7 - unk.
threading.py_bootstrap inner+0xa2 - thre.
python27.dllfunc@0x1eDedcb7+0x7 - unk.
threading.py!_bootstrap+0x8 - threading.p.
python27.dIIPyEval EvelCodeEx+0x68f - [u.
python27.dllfunc@0x1e09eac0+0x109 - u.
python27.dllIPyObiect Call+0xdb - [unknow.
python27.dllfunc@0x1e088810+0x126 - [u.
python27.dllIPyObiect Call+0xdb - [unknow.
python27.diPyEval CallObiectWithKeywor.
python27.dllfunc@0x1e057a9f+0x37 - [unk.
MSVCRO0.dlllfunc@0x78543460+0x66 - [u..
KERNEL32 DLLIBaseThreadlnitThunk+0x2.
ntdlldilfunc@0x6b2dab60+0x2e - [unknow.
ntdlldilfunc@0x6b2dab3f+0x1a - [unknow.

*Other names and brands may be claimed as the property of others.

Summary

Tuning can dramatically increase the performance of your code. Intel® VTune™
Amplifier XE now has the ability to profile Python code. You can also analyze
mixed Python/C code as well as pure Python. VTune™ Amplifier has a powerful
set of features that will allow you to quickly identify your performance

bottlenecks.

Call to action

Get Intel® Parallel Studio XE 2017 and start profiling your Python code today!

https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2017

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

(l N te,l ®experience

what's inside”

